
A Case for Optimistic Coordination in HPC Storage
Systems

Philip Carns,∗ Kevin Harms,∗ Dries Kimpe,∗ Justin M. Wozniak,∗ Robert Ross,∗ Lee Ward,† Matthew Curry,†

Ruth Klundt,† Geoff Danielson,† Cengiz Karakoyunlu,‡ John Chandy,‡ Bradley Settlemyer,§ William Gropp¶

∗Argonne National Laboratory, Argonne, IL, USA, {carns,dkimpe,wozniak,rross}@mcs.anl.gov, harms@alcf.anl.gov
†Sandia National Laboratories, Albuquerque, NM, USA, {lee,mlcurry,rklundt,gcdanie}@sandia.gov

‡University of Connecticut, Storrs, CT, USA, {cengiz,john.chandy}@uconn.edu
§Oak Ridge National Laboratory, Oak Ridge, TN, USA, settlemyerbw@ornl.gov

¶University of Illinois at Urbana-Champaign, Urbana, IL, USA, wgropp@illinois.edu

Abstract—High-performance computing (HPC) storage sys-
tems rely on access coordination to ensure that concurrent
updates do not produce incoherent results. HPC storage systems
typically employ pessimistic distributed locking to provide this
functionality in cases where applications cannot perform their
own coordination. This approach, however, introduces significant
performance overhead and complicates fault handling.

In this work we evaluate the viability of optimistic conditional
storage operations as an alternative to distributed locking in
HPC storage systems. We investigate design strategies and
compare the two approaches in a prototype object storage system
using a parallel read/modify/write benchmark. Our prototype
illustrates that conditional operations can be easily integrated
into distributed object storage systems and can outperform
standard coordination primitives for simple update workloads.
Our experiments show that conditional updates can achieve over
two orders of magnitude higher performance than pessimistic
locking for some parallel read/modify/write workloads.

I. INTRODUCTION

Parallel applications rely on high-performance computing
(HPC) storage systems to present a shared storage namespace
and service concurrent I/O requests from a large number
of processes. Because an HPC storage system is a shared
resource, access coordination is required to ensure that con-
current updates do not produce incoherent results. In some
cases this coordination is handled by the application itself
(e.g., by MPI synchronization or explicit data partitioning);
in other cases coordination is provided by the storage system
(e.g., POSIX file semantics). Storage system synchronization
primitives are especially critical in cases where it is difficult
for applications to protect consistency on their own. Examples
include

• concurrent namespace (file or directory) updates,
• unaligned access in block-based storage systems, and
• applications in which application-level coordination is not

feasible (e.g., loosely coupled calculations such as reverse
index computation, the GUPS workload, and parallel
histogram creation).

The traditional approach to providing access coordination
in these cases is through distributed file locking in a parallel
file system. This approach has several drawbacks. Distributed

locking is pessimistic; it introduces significant overhead even
in cases where conflicts are rare. In addition, it introduces
shared state on client processes. This shared state complicates
fault tolerance and compromises scalability by forcing the
storage system to be cognizant of client and application fault
conditions.

This problem has been studied extensively in the database
and shared-memory literature. A well-known alternative to
locking in those arenas is to leverage conditional storage
operations, such as compare-and-swap or load-link/store-
conditional. These primitives can be used as building blocks to
construct a number of higher-level atomic operations. To date,
however, conditional storage operations have not been adopted
in HPC storage systems for a number of reasons. Notably, the
traditional POSIX API does not support conditional storage
primitives, and current HPC storage systems do not expose any
other API to client nodes. In addition, there is a lack of support
for efficient comparison or conditional checks in the local
storage abstractions that form the foundation of most HPC
storage systems, for example, Trove (PVFS), ldiskfs (Lustre),
or ZFS (Lustre).

Fortunately, two storage trends are now converging in a way
that makes these problems more tenable. The first trend is
a growing consensus in the storage community that alterna-
tive storage APIs will be necessary in order to continue to
scale HPC storage systems. The most promising low level
model for storage access is the distributed object storage
model [1] [2] [3]. Such models are not tied to legacy POSIX
semantics and can more easily be modified to expose addi-
tional synchronization primitives to applications, while still
providing a solid foundation for a variety of higher level
interfaces (including POSIX). The second trend is toward
increased functionality in local storage abstractions in order
to support features such as checksumming [4], log-structured
storage [5], and provenance [6]. These features inherently
require additional metadata support in the local storage com-
ponent of a distributed storage system, and this same metadata
infrastructure can often be reused to support conditional stor-
age primitives with modest incremental complexity.

In this work we evaluate optimistic store-conditional op-
erators as an alternative to traditional pessimistic locking for
coordination in HPC storage systems. The remainder of the
paper is organized as follows. Section II identifies related work
in optimistic coordination primitives. Section III explores the
design space for implementing conditional storage primitives
in a distributed object storage system. Section IV presents
an empirical study comparing optimistic and pessimistic tech-
niques using a parallel read/modify/write benchmark on a pro-
totype object storage system. Section V presents conclusions
from our study and outlines directions for future work.

II. RELATED WORK

Optimistic coordination methods have been studied exten-
sively in database systems. Kung and Robinson [7] established
both the initial terminology and methodology for optimistic
updates in distributed databases. They also identified the
conditions in which those techniques would be more efficient
than traditional locking algorithms. Agrawal et al. [8] later
developed sophisticated models for comparing optimistic and
pessimistic algorithms in database systems.

Optimistic coordination techniques have also been evaluated
in object storage systems, though previous work has focused
on attribute access rather than bulk data access. Devulapalli
et al. [9] extended the T10 API to include compare-and-swap
(CAS) and fetch-and-add (FA) operations for object attributes.
CAS and FA primitives can be used to implement some
common data structures in storage systems, such as linked
lists, work queues, and delivery counters. Later work [10] also
demonstrated that directory operations can be supported on
object storage devices by using the CAS primitive to guarantee
correctness. Lang et al. [11] explored the possibility of adding
similar atomic operations (FA, enqueue, and dequeue) to
storage systems by way of file system extended attributes
rather than objects. The RADOS object storage API [12]
provided as part of the Ceph storage system [13] supports
arbitrary atomic object methods through a plug-in framework.
This mechanism could be used to implement a variety of
coordination primitives.

A number of distributed key-value storage systems have
identified a similar need for conditional operators. These
include conditional put and delete operations in Amazon
SimpleDB [14]; the watch statement in Redis [15]; the condput
operation in Hyperdex [16]; and the conditional put, update,
and delete operations in Amazon DynamoDB [17].

Amiri et al. [18] evaluated concurrency control protocols for
shared block storage devices. They considered three locking
techniques as well as timestamp ordering in terms of both
scalability and performance under contention.

III. IMPLEMENTATION STRATEGIES

One can choose from multiple techniques when implement-
ing a conditional write operation in a storage system. One
approach is to implement a compare-and-swap primitive. To
use a compare-and-swap primitive, the caller provides the
original data along with the new data for a write operation. The

server then compares the original data with the current data on
disk. If the buffers match, the server atomically “swaps” the
data on disk with the new data buffer. The principal advantage
of this approach is that it requires no modification to the
read() function and no additional metadata infrastructure.
The approach has two drawbacks, however. The first is that
each update must first read existing data off of disk in order
to perform the comparison, thereby limiting performance for
large updates. The second is that compare-and-swap primitives
are susceptible to the “ABA problem” [19]. The ABA problem
is a scenario in which a compare-and-swap operation succeeds
even though different clients have updated the buffer and then
changed it back to its original value before the compare-
and-swap completes. Hence, even though the compare-and-
swap will produce consistent results, it cannot be used as a
mechanism to detect buffer modification.

We therefore elected to use a version-based conditional
update strategy. At read time, the storage system produces a
version number for the region being read. The client can then
write the same region with an incremented version number.
The server will reject the write operation if the incremented
version number is not strictly higher than what is already on
disk.

The granularity of the version number is a critical de-
sign consideration for version-based conditional primitives.
A version number could apply to an entire object, a block,
or an arbitrary extent. Extent-based versioning allows for
smaller granularity and greater concurrency. We elected to
use extent-based versioning for this reason. Our prototype
builds on previous work on the Transactional Object Stor-
age Device (TOSD, formerly known as the VOSD), which
provides efficient, byte-granular atomicity and versioning in
order to support the construction of lightweight replication
protocols [20]. The TOSD uses log-structured storage for all
data. It maintains an index that maps logical offsets to log
offsets while simultaneously tracking a unique version number
for each extent in the log.

An important practical consideration when relying on byte-
granular versioning is how to handle the case where the read
step in a read/modify/write operation spans multiple versions.
In this case the storage system must either provide a compound
version number (by appending multiple version numbers or
hashing multiple version numbers) or promote the region to
use a single, consistent version number that is greater than
or equal to all version numbers contained in that region. We
did not implement either approach in our prototype; instead,
we allow conditional updates only to byte regions that share
a single version number.

Another design consideration when adding conditional op-
erators in an HPC storage system is the question of which
level of abstraction should perform the actual conditional
comparison to determine if a write will succeed. For example,
this comparison could be performed by the storage server
or provided natively by the local storage abstraction. The
local storage abstraction layer is likely to be the most effi-
cient location for the comparison, and this approach requires

File system
network protocols

Block Device,
T10 OSD,

or Local FS

Object Storage
Abstraction

Network
Abstraction

File Servers

Client Client Client Client Client

Conditonal
Check

Block Device,
T10 OSD,

or Local FS

Object Storage
Abstraction

Network
Abstraction

Block Device,
T10 OSD,

or Local FS

Object Storage
Abstraction

Network
Abstraction

Conditional
Write

Forwarded Write

Fig. 1. Overview of optimistic conditional write path

minimal modification of the server or the storage system
protocol. The drawback is that it complicates consistency if
data is replicated across servers. In particular, it may produce
nondeterministic results if concurrent conditional updates are
applied in different orders on different replicas. To avoid this
problem, we instead used the approach shown in Figure 1. A
master server performs the comparison atomically on behalf
of all replicas. If the conditional comparison succeeds, then
the update is forwarded as a normal write operation to local
storage and to replica servers. This approach allows the
master server to serialize conflicting conditional operations
and prevent nondeterministic ordering across replicas. Note
that the master server is assigned on a per object basis. We
expect that every server in the storage system will be a master
server for some subset of objects.

In this work we demonstrate our conditional write imple-
mentation using a prototype distributed object storage system
that uses MPI for communication, Aesop [21] as the program-
ming model, and the TOSD [20] for local storage. Objects are
distributed across servers algorithmically; clients can access
those objects using conventional create, read, write, and delete
primitives. The prototype also supports data “forks” that allow
multiple independent byte streams to be associated with the
same object. TOSD forks are similar to those offered by the
Galley parallel file system [22].

IV. EVALUATION

The experiments presented here were executed on the Fu-
sion cluster in Argonne’s Laboratory Computing Resource
Center. Fusion is an IBM iDataPlex dx260 M2 system with a
QDR InfiniBand interconnect. Fusion has 320 compute nodes
consisting of two Intel Nehalem 2.6 GHz Xeon processors
with 36 GB of RAM. Each node contains a local disk drive,
but we elected to use a ramdisk on each node for experimental
evaluation because of poor performance of the disk subsystem.
The prototype software was built with MPICH 1.2.1 and GCC
4.1.2.

A. Benchmark

We constructed a parallel read/modify/write benchmark
for use in evaluating our prototype. The read/modify/write
access pattern has applications in a variety of namespace
and coordination use cases, but our benchmark focuses on
a simple 4 KiB block read/modify/write example. MPI is
used to start a benchmark process on each compute node,
synchronize timing, and aggregate results. Aesop is used
within each client process to generate additional concurrency.
Each read/modify/write operation selects a random object and
a random fork within that object to read a value in, update it,
and write the change back to the same block. Forks are used
for convenience as opposed to modifying different offsets in
a single fork. The benchmark code provides two mechanisms
to ensure coherent updates. The first method uses pessimistic
locking with a single lock server and a discrete lock for each
object. The second method uses optimistic conditional updates
enforced by a version number.

When executed in locking mode, each concurrent operation
first acquires a lock for the object, reads a value, modifies the
value, writes the value, and releases the lock. The locking
method utilizes ZooKeeper [23], a distributed coordination
service. ZooKeeper runs as a standalone process and has a
C client library to link against for applications. ZooKeeper
supports high reliability through redundant servers and stores
data to disk. It is used by major organizations such as Yahoo!,
Rackspace, and Zynga [24]. ZooKeeper itself does not provide
a native lock mechanism, but it does offer a set of primitives
that can be used to construct a lock. The Apache ZooKeeper
suite publishes a recipe (protocol) for how to perform locks
in ZooKeeper [25]. We implemented this locking recipe in
a thread-safe manner with one deviation from the published
recipe: we used a “get” operation to set a watcher instead of
the “exists” operation. The reason is that using “exists” can
leak a resource if a watch is set on a nonexistent node [26].
ZooKeeper was configured with default settings except for
specifying the maxClientCnxns=0 option to prevent it from
limiting the number of concurrent connections.

We used a single ZooKeeper lock server in all experiments
and assigned a unique lock to each object in the storage
system. Note that the performance of the locking infrastructure
could be likely be improved through various architectural
changes, for example by embedding the lock services in the
storage system itself so that the number of lock servers scales
automatically with the size of the storage system. This type
of lock implementation sensitivity study is beyond the scope
of this paper.

The conditional update method was described in Section III.
For each read/modify/write update, the client reads a block and
retrieves a version number for that block as part of the read
operation. It then performs a conditional write of the same
block with the version number incremented by one. If the
write fails, then the client retries from the read step.

We did not hold the total number of operations in each
experiment at a fixed value. Instead, we varied the number of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 8 16
 24

 32
2^64

R
e
a
d
/M

o
d
if
y
/W

ri
te

 o
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

Range of blocks to update (randomly selected)

(a) Operation rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 8 16
 24

 32
2^64

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
w

ri
te

s

Range of blocks to update (randomly selected)

(b) Percentage of successful writes

Fig. 2. Sixteen concurrent conditional read/modify/write operations with
one client node and one server node. Each point represents an experiment;
the solid line shows the average of all experiments.

operations performed in order to measure at least 60 seconds
of sustained performance in all test cases. Each experiment
was repeated five times.

B. Results

We compared the optimistic and pessimistic coordination
techniques in terms of both sensitivity to update conflicts and
overall scalability.

1) Sensitivity to conflict rate: Optimistic coordination prim-
itives are most effective in situations with minimal contention.
When contention occurs, all but one write will fail, and
the client must retry any failed read/modify/write operations.
These additional retries will degrade performance. Figure 2
illustrates this effect at small scale. In this experiment, we is-
sued 16 concurrent read/modify/write operations from a single
client to a single object on a server. Each concurrent operation
in the benchmark modified a randomly chosen block, but we
controlled the level of contention by varying the range of the
random number generator from 1 (every update modifies the
same block; 100% contention) to 264 (every update modifies
a different block; 0% contention).

Figure 2(a) shows the performance in terms of aggregate
read/modify/write operations per second as the range of target
blocks is varied. Figure 2(b) shows the percentage of condi-
tional write operations that were successful for each data point.
If all 16 concurrent operations attempt to read/modify/write the
same block, then less than 10% of the updates are successful,
and we see a corresponding average aggregate rate of 327

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 8 16
 24

 32

R
e
a
d
/M

o
d
if
y
/W

ri
te

 o
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

Number of client nodes (16x concurrency per client)

avg: 216.6
avg: 491.7 avg: 522.1 avg: 543.2 avg: 539.0

conditional updates
locked updates

Fig. 3. Random read/modify/write rate with 32 server nodes and 16
concurrent operations per client (random updates to 264 possible blocks, no
contention). Solid line indicates average. Locking performance is annotated
for clarity.

ops/s. If all 16 concurrent operations modify different blocks
at all times, then 100% of the updates are successful, and we
see a corresponding average aggregate rate of 2,869 ops/s. A
correlation exists between the percentage of successful write
operations and the observed read/modify/write performance.

2) Scalability: We next evaluated the scalability of the
optimistic conditional write primitives in comparison with
traditional pessimistic locking. Figure 3 shows the ideal sce-
nario, in which the range of blocks being modified is so large
that contention never occurs among concurrent updates. In
this example we hold the number of servers (and number
of objects) constant at 32 and vary the number of client
nodes from 1 to 32. Each client node submits 16 concurrent
operations so that the aggregate concurrency varies from 16
to 512. The conditional read/modify/write approach attains
an average rate of 78,492 ops/s with 512 concurrent opera-
tions. The lock-based read/modify/write operation in contrast
achieves an average rate of only 539 ops/s. The lock-based
approach does not gain any additional performance beyond
256 concurrent operations because the lock server becomes a
central bottleneck for all operations. The optimistic approach is
limited only by the number of data servers and the distribution
of data on those servers.

Figure 4 repeats the previous experiment but limits the total
range of blocks being updated to 512 (16 blocks per server).
In this configuration, the number of blocks to be updated is
constant, but the probability of contention increases as more
concurrent operations are generated. The performance of the
lock-based approach is not significantly affected by the level of
contention produced by the benchmark. It therefore achieves
a maximum average rate of 534 ops/s, which is within 1% of
the performance attained by using pessimistic locking with
no contention. The conditional results show an interesting
trend, however. The performance scales well up through 256
concurrent client operations. At 512 concurrent operations,
however, the performance drops significantly despite a modest
decrease in the percentage of successful write operations. This
indicates that the level of contention has a stronger impact
on performance as the overall concurrency is increased. Even

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 8 16
 24

 32

R
e
a
d
/M

o
d
if
y
/W

ri
te

 o
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

Number of client nodes (16x concurrency per client)

(a) Operation rate

avg: 216.7
avg: 494.4 avg: 533.3 avg: 519.3 avg: 534.4

conditional updates
locked updates

 0

 20

 40

 60

 80

 100

 1 8 16
 24

 32

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
w

ri
te

s

Number of client nodes (16x concurrency per client)

(b) percentage of successful writes

Fig. 4. Read/modify/write operations with 32 server nodes, 16 concurrent
operations per client node, and random updates to 512 different blocks. Solid
line indicates average. Locking performance is annotated for clarity.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
a

x
 c

o
n

s
e

c
u

ti
v
e

 c
o

n
d

it
io

n
a

l
fa

ilu
re

s
 b

y
 b

lo
c
k

Server number

Fig. 5. Maximum consecutive conditional write failures per block with 32
servers, 32 clients, and random updates to 512 blocks.

in this case, however, the conditional write approach still
outperforms the lock-based approach by a factor of 17.

We instrumented the object storage server to better un-
derstand the cause of the observed performance degradation
with 512 concurrent operations. Figure 5 shows the maximum
number of consecutive failed write attempts for each block for
an example benchmark run that corresponds with the largest
conditional examples shown earlier in Figure 4. This example
used 32 servers, 32 clients, and 16 concurrent operations
per client to modify 512 randomly selected blocks. We see
that most blocks experienced no more than 5 consecutive
conditional write failures. The 16 blocks hosted on server 21,
however, experienced anywhere from 24 to 38 consecutive
conditional failures despite the overall random distribution
of updates. We believe that this is caused by a cascad-
ing contention effect. Once a server begins to experience

contention, the additional retry traffic may degrade server
performance. Contention on other blocks therefore becomes
increasingly likely as the server takes longer to process all
read/modify/write operations. This indicates that conditional
operation primitives may benefit from a back-off algorithm to
alleviate server pressure once high contention is observed. A
server could control the back-off strategy itself by delaying
acknowledgments for failed conditional update requests. This
approach would allow the back-off algorithm to take advantage
of statistics gathered by servers to make intelligent back-off
policy decisions.

V. CONCLUSIONS

In this work we used a prototype system to evaluate the
effectiveness of optimistic conditional write primitives as an
alternative to traditional, pessimistic distributed locking for
coordination in an HPC storage system. The conditional write
primitives leveraged a versioning object storage abstraction
to provide byte-level granularity for maximum update con-
currency. The resulting system scales automatically with the
number of servers and objects with no dependency on external
services to provide coordination. Our experiments show that
conditional update performance scales nearly linearly on a
Linux cluster with up to 512 concurrent operations in cases
with little contention. We also discovered that conditional
update performance may degrade significantly if steps are
not taken to throttle the retry rate in high-contention sce-
narios. Despite this behavior, conditional updates were found
to outperform a standard pessimistic locking implementation
by a wide margin in all cases. We therefore believe that
optimistic coordination primitives are an excellent alternative
to pessimistic locking for a wide range of potential HPC
storage use cases.

In future work we intend to explore back-off algorithms that
automatically account for server processing rate and contention
levels in order to prevent server performance degradation in
high-contention scenarios. We also hope to explore the use
of conditional updates in common file system use cases, such
as maintaining a consistent file and directory namespace. We
will also evaluate the use of conditional updates in managing
the consistency of distributed data structures in scientific data
analysis.

ACKNOWLEDGMENTS

This material is based on work supported by, or in part by
U.S. Department of Energy’s Oak Ridge National Laboratory
and included the Extreme Scale Systems Center, located at
ORNL and funded by the DoD in part by the “Novel Software
Storage Architectures” contract. This work also was supported
by U.S. Department of Energy, under contracts DE-AC02-
06CH11357 and DE-FG02-08ER25835.

We gratefully acknowledge the computing resources pro-
vided on “Fusion,” a 320-node computing cluster operated
by the Laboratory Computing Resource Center at Argonne
National Laboratory.

REFERENCES

[1] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and P. Sadayappan,
“Integrating parallel file systems with object-based storage devices,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ser.
SC ’07. New York, NY, USA: ACM, 2007, pp. 27:1–27:10.

[2] S. A. Weil, A. Leung, S. A. Brandt, and C. Maltzahn, “RADOS: A
Fast, Scalable, and Reliable Storage Service for Petabyte-scale Storage
Clusters,” in Proceedings of the 2007 ACM Petascale Data Storage
Workshop (PDSW 07), Reno, NV, Nov. 2007.

[3] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie,
“Blobseer: Next-generation data management for large scale infrastruc-
tures,” J. Parallel Distrib. Comput., vol. 71, no. 2, pp. 169–184, Feb.
2011.

[4] S. Narayan, J. Chandy, S. Lang, P. Carns, and R. Ross, “Uncovering
errors: The cost of detecting silent data corruption,” in Proceedings of
the 4th Annual Workshop on Petascale Data Storage. ACM, 2009, pp.
37–41.

[5] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26–52, Feb. 1992.

[6] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 4–4.

[7] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, June
1981.

[8] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control perfor-
mance modeling: alternatives and implications,” ACM Trans. Database
Syst., vol. 12, no. 4, pp. 609–654, Nov. 1987.

[9] A. Devulapalli, D. Dalessandro, and P. Wyckoff, “Data structure consis-
tency using atomic operations in storage devices,” IEEE International
Workshop on Storage Network Architecture and Parallel I/O, pp. 65–73,
2008.

[10] N. Ali, A. Devulapalli, D. Dalessandro, P. Wyckoff, and P. Sadayappan,
“An OSD-based approach to managing directory operations in parallel
file systems,” in IEEE International Conference on Cluster Computing,
Sept. 2008.

[11] S. Lang, R. Latham, D. Kimpe, and R. Ross, “Interfaces for Coordinated
Access in the File System,” in Proceedings of 2009 Workshop on
Interfaces and Architectures for Scientific Data Storage, Sept. 2009.

[12] “Librados API documentation.” [Online]. Available: http://ceph.com/
docs/master/api/librados/

[13] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI, 2006, pp. 307–320.

[14] “Amazon SimpleDB,” http://aws.amazon.com/simpledb/.
[15] “Redis,” http://redis.io/.
[16] “Hyperdex: A Searchable Distributed Key-Value Store,”

http://hyperdex.org/.
[17] “Amazon DynamoDB,” http://aws.amazon.com/dynamodb/.
[18] K. Amiri, G. A. Gibson, and R. Golding, “Highly concurrent shared

storage,” in Proceedings of the The 20th International Conference on
Distributed Computing Systems (ICDCS 2000). Washington, DC: IEEE
Computer Society, 2000, pp. 298–.

[19] M. Michael, “ABA prevention using single-word instructions,” IBM
Research Division, RC23089 (W0401-136), Tech. Rep, 2004.

[20] P. Carns, R. Ross, and S. Lang, “Object storage semantics for replicated
concurrent-writer file systems,” in Proceedings of 2010 Workshop on
Interfaces and Architectures for Scientific Data Storage (IASDS 2010).
IEEE, 2010.

[21] D. Kimpe, P. Carns, K. Harms, J. Wozniak, S. Lang, and R. Ross,
“Aesop: Expressing concurrency in high-performance system software,”
in Proceedings of 7th IEEE International Conference on Networking,
Architecture, and Storage (NAS 2012), 2012.

[22] N. Nieuwejaar and D. Kotz, “The Galley parallel file system,” in Pro-
ceedings of the 10th ACM International Conference on Supercomputing.
Philadelphia: ACM Press, May 1996, pp. 374–381.

[23] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for internet-scale systems,” in Proceedings of the 2010
USENIX conference on USENIX annual technical conference. USENIX
Association, 2010, pp. 11–11.

[24] “ZooKeeper Users.” [Online]. Available: https://cwiki.apache.org/
confluence/display/ZOOKEEPER/PoweredBy

[25] “ZooKeeper Lock Recipe.” [Online]. Available: http://zookeeper.apache.
org/doc/r3.3.5/recipes.html#sc recipes Locks

[26] “ZooKeeper Watch Jira Request.” [Online]. Available: https://issues.
apache.org/jira/browse/ZOOKEEPER-442

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

http://ceph.com/docs/master/api/librados/
http://ceph.com/docs/master/api/librados/
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
http://zookeeper.apache.org/doc/r3.3.5/recipes.html#sc_recipes_Locks
http://zookeeper.apache.org/doc/r3.3.5/recipes.html#sc_recipes_Locks
https://issues.apache.org/jira/browse/ZOOKEEPER-442
https://issues.apache.org/jira/browse/ZOOKEEPER-442

	Introduction
	Related Work
	Implementation Strategies
	Evaluation
	Benchmark
	Results
	Sensitivity to conflict rate
	Scalability

	Conclusions
	References

